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WALSH—FUNCTION REPRr SE:~TATION OF SHIFT REGISTERS

WITH STOCHAST IC INPU TS

A. Udaya Shankar and David K. Cheng
Electrical and Coniputer Engineering Department , Syracuse University ,

Syracuse , New York

ABSTRACT

A Waish—Hadamard description for the operation of linear—feedback

shift registers is presented . It is used to study the transient and

steady—state behavior at the outputs of shift registers with respect to

a stochastic input and an initial reg ister stat e.

Introduction

t Despite the wide—spread use of linear feedback shift registers

(LFSRs) ,  a method for determining the transient and steady—state output

statistics of an LFSR in a noisy environment under an initial register

state does not appear to be available. In this article we make use of a

Walsh—Hadamard representation for the outputs and the external input and

characterize the LFSR operation by a set of time—recursive equations over

the reals. The equations can be arranged in a matrix form where the matrix

Involved is sparst  and can be wri tten by an inspec tion of the LFSR. Given

a description of the LFSR’s initial state and external inputs that are

white and stationary, the Walsh—Hadamard representation allows an easy

computation of the transient and steady—state output statistics and dis-

plays the convergence of the transients in an elegant manner.

Prcl imtharies

Figure 1 is a schematic of an n—stage LFSR
1
, wh ere the feedback

coef f ic ients a0 , a~~, . . . ,  a 1 arc 0 or I wi t h a 1 indicating a ti’~ . To 
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ensure a genuine n—stage LFSR we insist that a = 1. The ~‘€~db~ ck ~~t
n—in-i

time t is 
~ 

a kyk (t i) , where t~ denotes modulo—2 addition . The transi—
k-O

tions of the LFSR are then described by

n—l
y (t) = x(t—l) ® ~ 

a~ y~ (t l) (1)
0 k=O

yk(t) 
= Yk_l(t~~

) ,  for 0 < k < n (2)

For any variable, say x, ranging over {o,i,. . . ,2”—i}, we denote its
binary representation <x 1

,...,x
i
,x
0
> by x. On the domain of the binary

n—tupies, the ith Waish—Hadamard function is defined as2

n—i n—i

~~~ ~ i~x~
Wal[i,~ J = (—l)~~~° = ( 1) L0 

(3)

nfor O i , x 2

n—i n—i
where I = ~ i~2~ and x = x 2 . Because the set of all Walsh

2~=O

functions on the n—tuples form a complete orthogonal basis , any problem

on the binary n—tuples can be solved equivalently in the correspond ing

Walsh domain.

Waish—Hadamard Description of LFSR

Using the quantities in eqns. 1 and 2 as the exponents of (—1),

we obtain, respectively

n—i
x(t—l) ® ~ 

akyk(t l)
y ~t , k—O

(—i) ° — (—i) (4)

and
yk_l (t~~

)
(—1) = (—I) , fo r  0 < k < n (5)
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In view of eqn. 3 , eqns. 4 and 5 ! i ~~~n ’

Wai [i , x ( t — 1 ) ]  W a i [ a , ~(t—i ), for k = 0 (6)

Wai[2
k
, ~ (t)] =

Wal{2
k_l

, y(t—l)], for 0 < k < n (fl

where y(t) = <y 1
(t),~~~.,y1

(t), y
0
(t)> and ~ <a

1
,.. .,a

1
,a
0
> . W~

note that cqns. 6 and 7 are insufficient to sustain i- e - i r - - foi ~ becau~ c

Wal [a,y(t)J is not generated .

Now , for every subset of eqns. 6 and 7 a product can Se f ~~r me~ to

yield a unique equation relating y ( t )  and y(t—1 ). Let I for 1 < i <

indicate by its l’s the equations from eqns. 6 and 7 which are mult ip L d .

Equating the resulting left—hand and right—hand sides , we have

n—i i 
— 

I
TI {Wal[2 , y(t)}} ~ 

= {Wal[l ,x(t—l)J Wal[a,y(t-1j}} °

n-i I
X fl {Wa1[2~~

1
, y(t—l)]} ~ (8~

2=1

For convenience , we denote Wal [i, y(t)I by Y .(t) and ~?n1[1 , x(t)] by

X(t). From the proper~~ that Wal [i, ~(t)I ~..Jal[j, ~ (t)] 
= ai~~i ® 1,y(t)1,

where ® is extended to denote dyadic addition (component—vise modulo—2

add ition ‘n I and j),eqns . 8 y ield

X(t—i) Y (t—l), for (odd) I {i ,1,. . ,2~~ l) (9)
i—i f —’

Y
1
(t) =

for (even) Ic [2,4 , • • • , 2
fl_ 2 } (10)

2

Eqns . 9 and 10 are capable  of sustaining recursion and c o rn p h t -I y de-

scr ib ing  the 1 FSR opera t ion .  In f ac t , denot in~ he c o l u m n  vcctar
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[Y1(t ) ,  Y2 ( t ), . . . ,  YN (tfl T by Y ( t ) , cr. N ~~
‘—1 , c ca~

9 and 10 in a matrix form

V(t )  = i~[x ( t — i )  I ‘~ (t — l ) (ii)

where the N X N ‘.at rix ~[X (t—l)] {B . . [ X ( t — 1 ) J :  I < I , j < Nj has the

following eiements :

i, for even i and j = 1/2

B~~ [XJ = X , for odd i and j (-
~
-
~
-
~
-) ® a (12)

0, o t herwise

For 1 < I < N: if I is even , then 1 < i /2  < 2f h ; and if i is odd ,

2n 1  < (
~j~-) ® a ~ N since a~~j = 1.

It is clear from eqn. 12 that ~ [X1 , for  X ~ 0, is a spar se T~m tr~ -..

with exactly one nonzero entry in each column and in each m w  and t h a t

the ent ry  is 1 for the f i r s t  2~~
1_ l columns and X fo r  t h c  2 n 1  s~:ccee~~i~~

columns. Thus, BIXI is essenti~ 1ly a permutation mat r ix  i nvol vin g the

scaling by X of some elements. For example , a 3—stage LFSR wi th feedback

coef f ic ien t  vector a = <1 0 1> will have a 7 x 7 B—matrix . Since I ~~ a = 4,

2 ® a = 7 and 3 ~~ a = 6, we have from eqn. 11, using eqn. 12 ,

y
1
(t) 0 0 0 0 X(t-l) 0 0 Y l (t_ 1) 1

1 0 0 0 0 0 0

Y
3
(t) 0 0 0 X(t—1) 0 0 0 \‘

3
(t—1’~ —

= (l
~ )0 1 0 0 0 0 0 Y ,(t—1)

Y
5
(t) 0 0 0 0 0 0 X(t—l) ‘

5
(t— 1)

0 0 1 0 0 0 0 V
1 (

t_l )

0 0 0 0 0 X(t-i) ~ i L\’7 t_ 1.

Returning to eqn .  11 , we can expresm ~~( t )  in terms of its original

state , Y(0). 

_ _  _ _  -
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~(t) = ~[X(t—1)] ~~x(t—2)]... i~[x(O)] Y(O) (14)

The product B(X(t—1)] B(X(t—2)]... ~[X(0)I is clearly also a permu-

tation matrix having 1 or —i as its nonzero entries. When x(t) B 0,

implying X(t) B 1, the LFSR operates as an oscillator with a sequence
e

per iod which we will denote by p. In this case , y(p)  = y(O) and hence

~P(1] = I where I is the identi ty matrix of an appropr ia te  d imension.

Output Statistics

We assume a white stationary input so that x(t
1
) is independent

of but identically distributed as x(t
2
) for t

1 ~ t~~
. This allows the

description of the initial state of the LFSR to be independent of the

input x(t) for t > 0. With EN] denoting expectation , let rP~(t) stand

for E[Y
1
(t)], ~p(t) for E[Y(t)], and x for E[X(t)]. Then, taking the

expectation of eqn. 14 results in the following transient solution.

i~(t) = ~
t[x]i~(o) (15)

The steady—state statistics, if they exist (i.e., if ~~[)J converges),

can be found by equating ~(t) to ~(t—i) In the expectation of eqn. 11.

We have

~(t) LI 
— 

~[x ] )  = ( 16)

It is seen from eqn . 16 that if (1 — 

~[x])
’ exists , the steady—state

i~(t) is uniquely 0. This means that all the outputs are independent

and equiprobably 0 or 1. Obviously, for the oscillator case where

= 1 or —1 , a steady—state statistic does not exist except for the

trivial case of ~(O) = 0. Thus , (I — ~ [i]) 
1 and (I — 

~[—lJ) 
1 
do not

exist. 

--- .— --—



The eigenvalues of ~[x] 
c mt  cc i i i -  t i e~~ ‘c ‘ c i  g ( h ~~ ( ~ t h e  1 5

output statistics. Indeed , denoting the t~ cigenvalut s ci h’11 ) by

Xl,X2, . . . ,A~~, some of wh ich may be c-~pl:~
1 , wc ‘av writ i-

~~ t [ ]  = A~ ~ ( l )  + C(2) + . . . -+  
~~~~, C ( N )  (17)

where the matrices ~ (l) , C( 2 ) , . . , ,  ~ (N) are d e ter ti i i. d f r c r i  the eigen-

vectors. As t + 
~~~ , an eigenvalue of a r~~~~ it tid e ~~~~-~i t e 1  th an I would

cause ~
t[x] and hence i p ( t )  to explode , which is not allowed ph~~ i a11v .

Thus IX .i < 1 for 1 < I < N .  I f  th~~ magnitude of an elgenvalue is 1,

eqns. 15 and 17 indicate that , at st:eady state , ~(t) would ~ie a non—

decaying periodic function . In view of the constantly growing uncer-

tainty introduced by x(t), such a tji(t) is possible if and only if

x c {l, —1). This implies determinism right from the outset. Thus, if

lxi < 1, we expect the contents of LFSR to ultimately reach maximum

entropy; i.e., ‘~(t) B 0.

The above observations m a y  be summarized as follows ; (i) 1X 1 ) < 1

for all 1 < I < N; (ii) lxi = 1 if and only if iX j  c {i ,o} for any

1 < i < N with at least one eigenvalue having a unit magnitude; and

(iii) lx i < 1 if and only if 1X J  < 1 for all 1 < I < N. From eqn . 17,

~~ 
~
‘m 

is the eigenvalue of the greatest magnitude and lx i < 1, then the

entries in ~
t [xI will decay to zero at least as fast as X

The joint probability distribution of y(t) can be obtained from

~i(t) via the Walsh—transform relationship . By definition ,

N
= 

~~ 
Pr~ y(t) = 7] Wa1[i,9~) (18)

1 20

The Invert t ransformation of eqn . 18 is

i i  08 Ø~3 9
-~ —

~~ ~~~~~~~ 

~~
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7

N
Pr[y(t) = = 2 n[1 ~ ~ ~ . ( t )  u~ 1 [i, }] ( 19)

1=1

We may conclude that, for lxi < 1, ~‘.(t) conve rges to 0 and Pr [y ( t )  =

converges to 2 ’
~, also at least as fast as IX 1~.

For the example considered in eqn. 13 the output statistic y(t) =

Pr[y(t) <OOl>] is plotted versus t in Fig . 2 f~ r an init ial sta te <001~ for

two values of x. For this maximum—length 3—stage LFSR (p=fl , 
~

exp(2~i /~~/7), i = 1,2,. ..,7. Thus , 1x 11 X
417

. We ob ~rv~ from

Fig. 2 that (i) 1(t) = 0 for  t = I and t 2 irrespective of x(t) for t~-

given in i t ia l  state <0 0 1> , as expected , (ii) y(t) converges to 2~~

0.125, as predicted by eqn. 19; and (iii) l Y( t +7 )  - 2~~ i/ ~‘( t) - 2~~~! 
= x4 —

Convergence is faster for a smaller x.

Conclusion

The behaviour of linear—feedback shift registers is neatly captured

by a Waish—Hadamard representation in the form of a matrix recursive equa-

tion which can be written by inspection and which yields the output sta-

tistics for a stochastic input quite easily. Because the representation

is over the reals where our intuition is stronger , it facilitates our

study of the transient and convergence properties in terms of the cigen—

values of a permutation matrix .
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Fig. 2 — Output prH: thu ty  of a 3- ~t ige max i r n u i n — i e n g t h  LFSR

versus tin t - :  a = <1 0 1> , v(0) = p = <0 0 1> . 
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